Variable selection with quantile regression tree
نویسندگان
چکیده
منابع مشابه
Variable Selection in Quantile Regression
After its inception in Koenker and Bassett (1978), quantile regression has become an important and widely used technique to study the whole conditional distribution of a response variable and grown into an important tool of applied statistics over the last three decades. In this work, we focus on the variable selection aspect of penalized quantile regression. Under some mild conditions, we demo...
متن کاملBayesian variable selection in quantile regression
In many applications, interest focuses on assessing relationships between predictors and the quantiles of the distribution of a continuous response. For example, in epidemiology studies, cutoffs to define premature delivery have been based on the 10th percentile of the distribution for gestational age at delivery. Using quantile regression, one can assess how this percentile varies with predict...
متن کاملInstrumental Variable Quantile Regression * †
Quantile regression is an increasingly important tool that estimates the conditional quantiles of a response Y given a vector of regressors D. It usefully generalizes Laplace’s median regression and can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. For the linear quantile model defined by Y = D′γ(U) where D′γ(U) is s...
متن کاملBayesian Parameter Estimation and Variable Selection for Quantile Regression
The principal goal of this work is to provide efficient algorithms for implementing the Bayesian approach to quantile regression. There are two major obstacles to overcome in order to achieve this. Firstly, it is necessary to specify a suitable likelihood given that the frequentist approach generally avoids such specifications. Secondly, sampling methods are usually required as analytical expre...
متن کاملInterquantile shrinkage and variable selection in quantile regression
Examination of multiple conditional quantile functions provides a comprehensive view of the relationship between the response and covariates. In situations where quantile slope coefficients share some common features, estimation efficiency and model interpretability can be improved by utilizing such commonality across quantiles. Furthermore, elimination of irrelevant predictors will also aid in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Applied Statistics
سال: 2016
ISSN: 1225-066X
DOI: 10.5351/kjas.2016.29.6.1095